Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Foolish Crowds Support Benign Overfitting (2110.02914v5)

Published 6 Oct 2021 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We prove a lower bound on the excess risk of sparse interpolating procedures for linear regression with Gaussian data in the overparameterized regime. We apply this result to obtain a lower bound for basis pursuit (the minimum $\ell_1$-norm interpolant) that implies that its excess risk can converge at an exponentially slower rate than OLS (the minimum $\ell_2$-norm interpolant), even when the ground truth is sparse. Our analysis exposes the benefit of an effect analogous to the "wisdom of the crowd", except here the harm arising from fitting the $\textit{noise}$ is ameliorated by spreading it among many directions -- the variance reduction arises from a $\textit{foolish}$ crowd.

Citations (18)

Summary

We haven't generated a summary for this paper yet.