Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and High-quality Prehensile Rearrangement in Cluttered and Confined Spaces (2110.02814v2)

Published 6 Oct 2021 in cs.RO and cs.AI

Abstract: Prehensile object rearrangement in cluttered and confined spaces has broad applications but is also challenging. For instance, rearranging products in a grocery shelf means that the robot cannot directly access all objects and has limited free space. This is harder than tabletop rearrangement where objects are easily accessible with top-down grasps, which simplifies robot-object interactions. This work focuses on problems where such interactions are critical for completing tasks. It proposes a new efficient and complete solver under general constraints for monotone instances, which can be solved by moving each object at most once. The monotone solver reasons about robot-object constraints and uses them to effectively prune the search space. The new monotone solver is integrated with a global planner to solve non-monotone instances with high-quality solutions fast. Furthermore, this work contributes an effective pre-processing tool to significantly speed up online motion planning queries for rearrangement in confined spaces. Experiments further demonstrate that the proposed monotone solver, equipped with the pre-processing tool, results in 57.3% faster computation and 3 times higher success rate than state-of-the-art methods. Similarly, the resulting global planner is computationally more efficient and has a higher success rate, while producing high-quality solutions for non-monotone instances (i.e., only 1.3 additional actions are needed on average). Videos of demonstrating solutions on a real robotic system and codes can be found at https://github.com/Rui1223/uniform_object_rearrangement.

Citations (25)

Summary

We haven't generated a summary for this paper yet.