Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spell my name: keyword boosted speech recognition (2110.02791v1)

Published 6 Oct 2021 in cs.SD, cs.CL, and eess.AS

Abstract: Recognition of uncommon words such as names and technical terminology is important to understanding conversations in context. However, the ability to recognise such words remains a challenge in modern automatic speech recognition (ASR) systems. In this paper, we propose a simple but powerful ASR decoding method that can better recognise these uncommon keywords, which in turn enables better readability of the results. The method boosts the probabilities of given keywords in a beam search based on acoustic model predictions. The method does not require any training in advance. We demonstrate the effectiveness of our method on the LibriSpeeech test sets and also internal data of real-world conversations. Our method significantly boosts keyword accuracy on the test sets, while maintaining the accuracy of the other words, and as well as providing significant qualitative improvements. This method is applicable to other tasks such as machine translation, or wherever unseen and difficult keywords need to be recognised in beam search.

Citations (12)

Summary

We haven't generated a summary for this paper yet.