Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous Attentions for Solving Pickup and Delivery Problem via Deep Reinforcement Learning (2110.02634v1)

Published 6 Oct 2021 in cs.LG

Abstract: Recently, there is an emerging trend to apply deep reinforcement learning to solve the vehicle routing problem (VRP), where a learnt policy governs the selection of next node for visiting. However, existing methods could not handle well the pairing and precedence relationships in the pickup and delivery problem (PDP), which is a representative variant of VRP. To address this challenging issue, we leverage a novel neural network integrated with a heterogeneous attention mechanism to empower the policy in deep reinforcement learning to automatically select the nodes. In particular, the heterogeneous attention mechanism specifically prescribes attentions for each role of the nodes while taking into account the precedence constraint, i.e., the pickup node must precede the pairing delivery node. Further integrated with a masking scheme, the learnt policy is expected to find higher-quality solutions for solving PDP. Extensive experimental results show that our method outperforms the state-of-the-art heuristic and deep learning model, respectively, and generalizes well to different distributions and problem sizes.

Citations (72)

Summary

We haven't generated a summary for this paper yet.