Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Multi-Modal Embeddings from Structured Data (2110.02577v1)

Published 6 Oct 2021 in cs.CL and cs.CV

Abstract: Multi-modal word semantics aims to enhance embeddings with perceptual input, assuming that human meaning representation is grounded in sensory experience. Most research focuses on evaluation involving direct visual input, however, visual grounding can contribute to linguistic applications as well. Another motivation for this paper is the growing need for more interpretable models and for evaluating model efficiency regarding size and performance. This work explores the impact of visual information for semantics when the evaluation involves no direct visual input, specifically semantic similarity and relatedness. We investigate a new embedding type in-between linguistic and visual modalities, based on the structured annotations of Visual Genome. We compare uni- and multi-modal models including structured, linguistic and image based representations. We measure the efficiency of each model with regard to data and model size, modality / data distribution and information gain. The analysis includes an interpretation of embedding structures. We found that this new embedding conveys complementary information for text based embeddings. It achieves comparable performance in an economic way, using orders of magnitude less resources than visual models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anita L. Verő (3 papers)
  2. Ann Copestake (13 papers)
Citations (4)