Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Newton policy gradient algorithms (2110.02398v6)

Published 5 Oct 2021 in cs.LG and math.OC

Abstract: Policy gradient algorithms have been widely applied to Markov decision processes and reinforcement learning problems in recent years. Regularization with various entropy functions is often used to encourage exploration and improve stability. This paper proposes an approximate Newton method for the policy gradient algorithm with entropy regularization. In the case of Shannon entropy, the resulting algorithm reproduces the natural policy gradient algorithm. For other entropy functions, this method results in brand-new policy gradient algorithms. We prove that all these algorithms enjoy Newton-type quadratic convergence and that the corresponding gradient flow converges globally to the optimal solution. We use synthetic and industrial-scale examples to demonstrate that the proposed approximate Newton method typically converges in single-digit iterations, often orders of magnitude faster than other state-of-the-art algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.