Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SeanNet: Semantic Understanding Network for Localization Under Object Dynamics (2110.02276v2)

Published 5 Oct 2021 in cs.RO and cs.LG

Abstract: We aim for domestic robots to perform long-term indoor service. Under the object-level scene dynamics induced by daily human activities, a robot needs to robustly localize itself in the environment subject to scene uncertainties. Previous works have addressed visual-based localization in static environments, yet the object-level scene dynamics challenge existing methods for the long-term deployment of the robot. This paper proposes a SEmantic understANding Network (SeanNet) architecture that enables an effective learning process with coupled visual and semantic inputs. With a dataset that contains object dynamics, we propose a cascaded contrastive learning scheme to train the SeanNet for learning a vector scene embedding. Subsequently, we can measure the similarity between the current observed scene and the target scene, whereby enables robust localization under object-level dynamics. In our experiments, we benchmark SeanNet against state-of-the-art image-encoding networks (baselines) on scene similarity measures. The SeanNet architecture with the proposed training method can achieve an 85.02\% accuracy which is higher than baselines. We further integrate the SeanNet and the other networks as the localizers into a visual navigation application. We demonstrate that SeanNet achieves higher success rates compared to the baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiao Li (357 papers)
  2. Yidong Du (2 papers)
  3. Zhen Zeng (41 papers)
  4. Odest Chadwicke Jenkins (41 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.