Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Contextual Adaptation with Neural Associative Memory for On-Device Personalized Speech Recognition (2110.02220v2)

Published 5 Oct 2021 in eess.AS, cs.AI, cs.CL, cs.LG, and cs.NE

Abstract: Fast contextual adaptation has shown to be effective in improving Automatic Speech Recognition (ASR) of rare words and when combined with an on-device personalized training, it can yield an even better recognition result. However, the traditional re-scoring approaches based on an external LLM is prone to diverge during the personalized training. In this work, we introduce a model-based end-to-end contextual adaptation approach that is decoder-agnostic and amenable to on-device personalization. Our on-device simulation experiments demonstrate that the proposed approach outperforms the traditional re-scoring technique by 12% relative WER and 15.7% entity mention specific F1-score in a continues personalization scenario.

Citations (33)

Summary

We haven't generated a summary for this paper yet.