Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A BSDEs approach to pathwise uniqueness for stochastic evolution equations (2110.01994v2)

Published 5 Oct 2021 in math.PR

Abstract: We prove strong well-posedness for a class of stochastic evolution equations in Hilbert spaces H when the drift term is Holder continuous. This class includes examples of semilinear stochastic damped wave equations which describe elastic systems with structural damping (for such equations even existence of solutions in the linear case is a delicate issue) and semilinear stochastic 3D heat equations. In the deterministic case, there are examples of non-uniqueness in our framework. Strong (or pathwise) uniqueness is restored by means of a suitable additive Wiener noise. The proof of uniqueness relies on the study of related systems of infinite dimensional forward-backward SDEs (FBSDEs). This is a different approach with respect to the well-known method based on the Ito formula and the associated Kolmogorov equation (the so-called Zvonkin transformation or Ito-Tanaka trick). We deal with approximating FBSDEs in which the linear part generates a group of bounded linear operators in H; such approximations depend on the type of SPDEs we are considering. We also prove Lipschitz dependence of solutions from their initial conditions.

Summary

We haven't generated a summary for this paper yet.