Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Protagonists' Tagger in Literary Domain -- New Datasets and a Method for Person Entity Linkage (2110.01349v1)

Published 4 Oct 2021 in cs.CL

Abstract: Semantic annotation of long texts, such as novels, remains an open challenge in NLP. This research investigates the problem of detecting person entities and assigning them unique identities, i.e., recognizing people (especially main characters) in novels. We prepared a method for person entity linkage (named entity recognition and disambiguation) and new testing datasets. The datasets comprise 1,300 sentences from 13 classic novels of different genres that a novel reader had manually annotated. Our process of identifying literary characters in a text, implemented in protagonistTagger, comprises two stages: (1) named entity recognition (NER) of persons, (2) named entity disambiguation (NED) - matching each recognized person with the literary character's full name, based on approximate text matching. The protagonistTagger achieves both precision and recall of above 83% on the prepared testing sets. Finally, we gathered a corpus of 13 full-text novels tagged with protagonistTagger that comprises more than 35,000 mentions of literary characters.

Citations (2)

Summary

We haven't generated a summary for this paper yet.