Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed-norm Amalgam Spaces (2110.01197v1)

Published 4 Oct 2021 in math.FA

Abstract: We introduce the mixed-norm amalgam spaces $(L{\vec{p}},L{\vec{s}})(\mathbb{R}n)$ and $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$, and show their some basic properties. In addition, we find the predual $\mathcal{H}(\vec{p}',\vec{s}\,',\alpha')$ of mixed-norm amalgam spaces $(L{\vec{p}},\ell{\vec{s}}){\alpha}(\mathbb{R}n)$ by the dual spaces $(L{\vec{p}'},\ell{\vec{s}\,'})(\mathbb{R}n)$ of $(L{\vec{p}},\ell{\vec{s}})(\mathbb{R}n)$, where $(L{\vec{p}},L{\vec{s}})(\mathbb{R}n)=(L{\vec{p}},\ell{\vec{s}})(\mathbb{R}n)$ and $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)=(L{\vec{p}},\ell{\vec{s}}){\alpha}(\mathbb{R}n)$. Then, we study the strong-type estimates for fractional integral operators $I_{\gamma}$ on mixed-norm amalgam spaces $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$. And, the strong-type estimates of linear commutators $[b,I_{\gamma}]$ generated by $b\in BMO(\mathbb{R}n)$ and $I_{\gamma}$ on mixed-norm amalgam spaces $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$ are established as well. Furthermore, based on the dual theorem, the characterization of $BMO(\mathbb{R}n)$ by the boundedness of $[b,I_\gamma]$ from $(L{\vec{p}},L{\vec{s}}){\alpha}(\mathbb{R}n)$ to $(L{\vec{q}},L{\vec{s}}){\beta}(\mathbb{R}n)$ is given, which is a new result even for the classical amalgam spaces.

Summary

We haven't generated a summary for this paper yet.