Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement (2110.00970v4)

Published 3 Oct 2021 in cs.CV

Abstract: Low-light images challenge both human perceptions and computer vision algorithms. It is crucial to make algorithms robust to enlighten low-light images for computational photography and computer vision applications such as real-time detection and segmentation. This paper proposes a semantic-guided zero-shot low-light enhancement network (SGZ) which is trained in the absence of paired images, unpaired datasets, and segmentation annotation. Firstly, we design an enhancement factor extraction network using depthwise separable convolution for an efficient estimate of the pixel-wise light deficiency of an low-light image. Secondly, we propose a recurrent image enhancement network to progressively enhance the low-light image with affordable model size. Finally, we introduce an unsupervised semantic segmentation network for preserving the semantic information during intensive enhancement. Extensive experiments on benchmark datasets and a low-light video demonstrate that our model outperforms the previous state-of-the-art. We further discuss the benefits of the proposed method for low-light detection and segmentation. Code is available at https://github.com/ShenZheng2000/Semantic-Guided-Low-Light-Image-Enhancement

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shen Zheng (18 papers)
  2. Gaurav Gupta (44 papers)
Citations (85)

Summary

We haven't generated a summary for this paper yet.