Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Case Study to Reveal if an Area of Interest has a Trend in Ongoing Tweets Using Word and Sentence Embeddings (2110.00866v1)

Published 2 Oct 2021 in cs.CL and cs.AI

Abstract: In the field of Natural Language Processing, information extraction from texts has been the objective of many researchers for years. Many different techniques have been applied in order to reveal the opinion that a tweet might have, thus understanding the sentiment of the small writing up to 280 characters. Other than figuring out the sentiment of a tweet, a study can also focus on finding the correlation of the tweets with a certain area of interest, which constitutes the purpose of this study. In order to reveal if an area of interest has a trend in ongoing tweets, we have proposed an easily applicable automated methodology in which the Daily Mean Similarity Scores that show the similarity between the daily tweet corpus and the target words representing our area of interest is calculated by using a na\"ive correlation-based technique without training any Machine Learning Model. The Daily Mean Similarity Scores have mainly based on cosine similarity and word/sentence embeddings computed by Multilanguage Universal Sentence Encoder and showed main opinion stream of the tweets with respect to a certain area of interest, which proves that an ongoing trend of a specific subject on Twitter can easily be captured in almost real time by using the proposed methodology in this study. We have also compared the effectiveness of using word versus sentence embeddings while applying our methodology and realized that both give almost the same results, whereas using word embeddings requires less computational time than sentence embeddings, thus being more effective. This paper will start with an introduction followed by the background information about the basics, then continue with the explanation of the proposed methodology and later on finish by interpreting the results and concluding the findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. İsmail Aslan (2 papers)
  2. Yücel Topçu (1 paper)

Summary

We haven't generated a summary for this paper yet.