Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium Propagation (2110.00414v2)

Published 1 Oct 2021 in cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Predicting fading channels is a classical problem with a vast array of applications, including as an enabler of AI-based proactive resource allocation for cellular networks. Under the assumption that the fading channel follows a stationary complex Gaussian process, as for Rayleigh and Rician fading models, the optimal predictor is linear, and it can be directly computed from the Doppler spectrum via standard linear minimum mean squared error (LMMSE) estimation. However, in practice, the Doppler spectrum is unknown, and the predictor has only access to a limited time series of estimated channels. This paper proposes to leverage meta-learning in order to mitigate the requirements in terms of training data for channel fading prediction. Specifically, it first develops an offline low-complexity solution based on linear filtering via a meta-trained quadratic regularization. Then, an online method is proposed based on gradient descent and equilibrium propagation (EP). Numerical results demonstrate the advantages of the proposed approach, showing its capacity to approach the genie-aided LMMSE solution with a small number of training data points.

Citations (8)

Summary

We haven't generated a summary for this paper yet.