Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error-free approximation of explicit linear MPC through lattice piecewise affine expression (2110.00201v3)

Published 1 Oct 2021 in eess.SY, cs.LG, and cs.SY

Abstract: In this paper, the disjunctive and conjunctive lattice piecewise affine (PWA) approximations of explicit linear model predictive control (MPC) are proposed. The training data are generated uniformly in the domain of interest, consisting of the state samples and corresponding affine control laws, based on which the lattice PWA approximations are constructed. Re-sampling of data is also proposed to guarantee that the lattice PWA approximations are identical to explicit MPC control law in the unique order (UO) regions containing the sample points as interior points. Additionally, under mild assumptions, the equivalence of the two lattice PWA approximations guarantees that the approximations are error-free in the domain of interest. The algorithms for deriving statistically error-free approximation to the explicit linear MPC are proposed and the complexity of the entire procedure is analyzed, which is polynomial with respect to the number of samples. The performance of the proposed approximation strategy is tested through two simulation examples, and the result shows that with a moderate number of sample points, we can construct lattice PWA approximations that are equivalent to optimal control law of the explicit linear MPC.

Citations (3)

Summary

We haven't generated a summary for this paper yet.