Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Deep Minimizing Movement Scheme (2109.14851v5)

Published 30 Sep 2021 in math.NA, cs.NA, math.AP, and math.OC

Abstract: Solutions of certain partial differential equations (PDEs) are often represented by the steepest descent curves of corresponding functionals. Minimizing movement scheme was developed in order to study such curves in metric spaces. Especially, Jordan-Kinderlehrer-Otto studied the Fokker-Planck equation in this way with respect to the Wasserstein metric space. In this paper, we propose a deep learning-based minimizing movement scheme for approximating the solutions of PDEs. The proposed method is highly scalable for high-dimensional problems as it is free of mesh generation. We demonstrate through various kinds of numerical examples that the proposed method accurately approximates the solutions of PDEs by finding the steepest descent direction of a functional even in high dimensions.

Citations (16)

Summary

We haven't generated a summary for this paper yet.