Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bitcoin Transaction Strategy Construction Based on Deep Reinforcement Learning (2109.14789v1)

Published 30 Sep 2021 in cs.LG, cs.SY, eess.SP, and eess.SY

Abstract: The emerging cryptocurrency market has lately received great attention for asset allocation due to its decentralization uniqueness. However, its volatility and brand new trading mode have made it challenging to devising an acceptable automatically-generating strategy. This study proposes a framework for automatic high-frequency bitcoin transactions based on a deep reinforcement learning algorithm-proximal policy optimization (PPO). The framework creatively regards the transaction process as actions, returns as awards and prices as states to align with the idea of reinforcement learning. It compares advanced machine learning-based models for static price predictions including support vector machine (SVM), multi-layer perceptron (MLP), long short-term memory (LSTM), temporal convolutional network (TCN), and Transformer by applying them to the real-time bitcoin price and the experimental results demonstrate that LSTM outperforms. Then an automatically-generating transaction strategy is constructed building on PPO with LSTM as the basis to construct the policy. Extensive empirical studies validate that the proposed method performs superiorly to various common trading strategy benchmarks for a single financial product. The approach is able to trade bitcoins in a simulated environment with synchronous data and obtains a 31.67% more return than that of the best benchmark, improving the benchmark by 12.75%. The proposed framework can earn excess returns through both the period of volatility and surge, which opens the door to research on building a single cryptocurrency trading strategy based on deep learning. Visualizations of trading the process show how the model handles high-frequency transactions to provide inspiration and demonstrate that it can be expanded to other financial products.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Fengrui Liu (3 papers)
  2. Yang Li (1142 papers)
  3. Baitong Li (3 papers)
  4. Jiaxin Li (57 papers)
  5. Huiyang Xie (1 paper)
Citations (37)

Summary

We haven't generated a summary for this paper yet.