Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Universal Deep Room Acoustics Estimator (2109.14436v1)

Published 29 Sep 2021 in eess.AS and cs.SD

Abstract: Speech audio quality is subject to degradation caused by an acoustic environment and isotropic ambient and point noises. The environment can lead to decreased speech intelligibility and loss of focus and attention by the listener. Basic acoustic parameters that characterize the environment well are (i) signal-to-noise ratio (SNR), (ii) speech transmission index, (iii) reverberation time, (iv) clarity, and (v) direct-to-reverberant ratio. Except for the SNR, these parameters are usually derived from the Room Impulse Response (RIR) measurements; however, such measurements are often not available. This work presents a universal room acoustic estimator design based on convolutional recurrent neural networks that estimate the acoustic environment measurement blindly and jointly. Our results indicate that the proposed system is robust to non-stationary signal variations and outperforms current state-of-the-art methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.