Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust recovery of bandlimited graph signals via randomized dynamical sampling (2109.14079v2)

Published 28 Sep 2021 in cs.IT, cs.NA, math.IT, math.NA, and stat.CO

Abstract: Heat diffusion processes have found wide applications in modelling dynamical systems over graphs. In this paper, we consider the recovery of a $k$-bandlimited graph signal that is an initial signal of a heat diffusion process from its space-time samples. We propose three random space-time sampling regimes, termed dynamical sampling techniques, that consist in selecting a small subset of space-time nodes at random according to some probability distribution. We show that the number of space-time samples required to ensure stable recovery for each regime depends on a parameter called the spectral graph weighted coherence, that depends on the interplay between the dynamics over the graphs and sampling probability distributions. In optimal scenarios, no more than $\mathcal{O}(k \log(k))$ space-time samples are sufficient to ensure accurate and stable recovery of all $k$-bandlimited signals. In any case, dynamical sampling typically requires much fewer spatial samples than the static case by leveraging the temporal information. Then, we propose a computationally efficient method to reconstruct $k$-bandlimited signals from their space-time samples. We prove that it yields accurate reconstructions and that it is also stable to noise. Finally, we test dynamical sampling techniques on a wide variety of graphs. The numerical results support our theoretical findings and demonstrate the efficiency.

Citations (6)

Summary

We haven't generated a summary for this paper yet.