Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations (2109.14026v2)

Published 28 Sep 2021 in cs.RO, cs.CV, and cs.LG

Abstract: To proactively navigate and traverse various terrains, active use of visual perception becomes indispensable. We aim to investigate the feasibility and performance of using sparse visual observations to achieve perceptual locomotion over a range of common terrains (steps, ramps, gaps, and stairs) in human-centered environments. We formulate a selection of sparse visual inputs suitable for locomotion over the terrains of interest, and propose a learning framework to integrate exteroceptive and proprioceptive states. We specifically design the state observations and a training curriculum to learn feedback control policies effectively over a range of different terrains. We extensively validate and benchmark the learned policy in various tasks: omnidirectional walking on flat ground, and forward locomotion over various obstacles, showing high success rate of traversability. Furthermore, we study exteroceptive ablations and evaluate policy generalization by adding various levels of noise and testing on new unseen terrains. We demonstrate the capabilities of autonomous perceptual locomotion that can be achieved by only using sparse visual observations from direct depth measurements, which are easily available from a Lidar or RGB-D sensor, showing robust ascent and descent over high stairs of 20 cm height, i.e., 50% leg length, and robustness against noise and unseen terrains.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com