Papers
Topics
Authors
Recent
2000 character limit reached

An immersed interface method for the 2D vorticity-velocity Navier-Stokes equations with multiple bodies

Published 28 Sep 2021 in physics.flu-dyn and physics.comp-ph | (2109.13628v1)

Abstract: We present an immersed interface method for the vorticity-velocity form of the 2D Navier Stokes equations that directly addresses challenges posed by multiply connected domains, nonconvex obstacles, and the calculation of force distributions on immersed surfaces. The immersed interface method is re-interpreted as a polynomial extrapolation of flow quantities and boundary conditions into the obstacle, reducing its computational and implementation complexity. In the flow, the vorticity transport equation is discretized using a conservative finite difference scheme and explicit Runge-Kutta time integration. The velocity reconstruction problem is transformed to a scalar Poisson equation that is discretized with conservative finite differences, and solved using an FFT-accelerated iterative algorithm. The use of conservative differencing throughout leads to exact enforcement of a discrete Kelvin's theorem, which provides the key to simulations with multiply connected domains and outflow boundaries. The method achieves second order spatial accuracy and third order temporal accuracy, and is validated on a variety of 2D flows in internal and free-space domains.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.