Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rumour Detection via Zero-shot Cross-lingual Transfer Learning (2109.12773v1)

Published 27 Sep 2021 in cs.CL

Abstract: Most rumour detection models for social media are designed for one specific language (mostly English). There are over 40 languages on Twitter and most languages lack annotated resources to build rumour detection models. In this paper we propose a zero-shot cross-lingual transfer learning framework that can adapt a rumour detection model trained for a source language to another target language. Our framework utilises pretrained multilingual LLMs (e.g.\ multilingual BERT) and a self-training loop to iteratively bootstrap the creation of ''silver labels'' in the target language to adapt the model from the source language to the target language. We evaluate our methodology on English and Chinese rumour datasets and demonstrate that our model substantially outperforms competitive benchmarks in both source and target language rumour detection.

Citations (12)

Summary

We haven't generated a summary for this paper yet.