Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convergence to local limit of nonlocal models with approximated interaction neighborhoods (2109.12485v2)

Published 26 Sep 2021 in math.NA and cs.NA

Abstract: Many nonlocal models have adopted Euclidean balls as the nonlocal interaction neighborhoods. When solving them numerically, it is sometimes convenient to adopt polygonal approximations of such balls. A crucial question is, to what extent such approximations affect the nonlocal operators and the corresponding solutions. While recent works have analyzed this issue for a fixed horizon parameter, the question remains open in the case of a small or vanishing horizon parameter, which happens often in many practical applications and has significant impact on the reliability and robustness of nonlocal modeling and simulations. In this work, we are interested in addressing this issue and establishing the convergence of the nonlocal solutions associated with polygonally approximated interaction neighborhoods to the local limit of the original nonlocal solutions. Our finding reveals that the new nonlocal solution does not converge to the correct local limit when the number of sides of polygons is uniformly bounded. On the other hand, if the number of sides tends to infinity, the desired convergence can be established. These results may be used to guide future computational studies of nonlocal models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.