Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimisation of MCTS Player for The Lord of the Rings: The Card Game (2109.12001v1)

Published 24 Sep 2021 in cs.LG

Abstract: The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game "The Lord of the Rings". The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.