Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multi-Layered GBDT Via Back Propagation (2109.11863v2)

Published 24 Sep 2021 in cs.LG

Abstract: Deep neural networks are able to learn multi-layered representation via back propagation (BP). Although the gradient boosting decision tree (GBDT) is effective for modeling tabular data, it is non-differentiable with respect to its input, thus suffering from learning multi-layered representation. In this paper, we propose a framework of learning multi-layered GBDT via BP. We approximate the gradient of GBDT based on linear regression. Specifically, we use linear regression to replace the constant value at each leaf ignoring the contribution of individual samples to the tree structure. In this way, we estimate the gradient for intermediate representations, which facilitates BP for multi-layered GBDT. Experiments show the effectiveness of the proposed method in terms of performance and representation ability. To the best of our knowledge, this is the first work of optimizing multi-layered GBDT via BP. This work provides a new possibility of exploring deep tree based learning and combining GBDT with neural networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Zhendong Zhang (24 papers)

Summary

We haven't generated a summary for this paper yet.