Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morse-STF: Improved Protocols for Privacy-Preserving Machine Learning (2109.11726v2)

Published 24 Sep 2021 in cs.CR, cs.LG, and math.NT

Abstract: Secure multi-party computation enables multiple mutually distrusting parties to perform computations on data without revealing the data itself, and has become one of the core technologies behind privacy-preserving machine learning. In this work, we present several improved privacy-preserving protocols for both linear and non-linear layers in machine learning. For linear layers, we present an extended beaver triple protocol for bilinear maps that significantly reduces communication of convolution layer. For non-linear layers, we introduce novel protocols for computing the sigmoid and softmax function. Both functions are essential building blocks for machine learning training of classification tasks. Our protocols are both more scalable and robust than prior constructions, and improves runtime performance by 3-17x. Finally, we introduce Morse-STF, an end-to-end privacy-preserving system for machine learning training that leverages all these improved protocols. Our system achieves a 1.8x speedup on logistic regression and 3.9-4.9x speedup on convolutional neural networks compared to prior state-of-the-art systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.