Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Dynamic Attributes for Next Basket Recommendation (2109.11654v1)

Published 23 Sep 2021 in cs.AI and cs.IR

Abstract: Traditional approaches to next item and next basket recommendation typically extract users' interests based on their past interactions and associated static contextual information (e.g. a user id or item category). However, extracted interests can be inaccurate and become obsolete. Dynamic attributes, such as user income changes, item price changes (etc.), change over time. Such dynamics can intrinsically reflect the evolution of users' interests. We argue that modeling such dynamic attributes can boost recommendation performance. However, properly integrating them into user interest models is challenging since attribute dynamics can be diverse such as time-interval aware, periodic patterns (etc.), and they represent users' behaviors from different perspectives, which can happen asynchronously with interactions. Besides dynamic attributes, items in each basket contain complex interdependencies which might be beneficial but nontrivial to effectively capture. To address these challenges, we propose a novel Attentive network to model Dynamic attributes (named AnDa). AnDa separately encodes dynamic attributes and basket item sequences. We design a periodic aware encoder to allow the model to capture various temporal patterns from dynamic attributes. To effectively learn useful item relationships, intra-basket attention module is proposed. Experimental results on three real-world datasets demonstrate that our method consistently outperforms the state-of-the-art.

Citations (17)

Summary

We haven't generated a summary for this paper yet.