Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Strategies for Industrial Surface Defect Detection Systems (2109.11304v1)

Published 23 Sep 2021 in cs.CV

Abstract: Deep learning methods have proven to outperform traditional computer vision methods in various areas of image processing. However, the application of deep learning in industrial surface defect detection systems is challenging due to the insufficient amount of training data, the expensive data generation process, the small size, and the rare occurrence of surface defects. From literature and a polymer products manufacturing use case, we identify design requirements which reflect the aforementioned challenges. Addressing these, we conceptualize design principles and features informed by deep learning research. Finally, we instantiate and evaluate the gained design knowledge in the form of actionable guidelines and strategies based on an industrial surface defect detection use case. This article, therefore, contributes to academia as well as practice by (1) systematically identifying challenges for the industrial application of deep learning-based surface defect detection, (2) strategies to overcome these, and (3) an experimental case study assessing the strategies' applicability and usefulness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (9)

Summary

We haven't generated a summary for this paper yet.