Papers
Topics
Authors
Recent
2000 character limit reached

Multi-view Contrastive Self-Supervised Learning of Accounting Data Representations for Downstream Audit Tasks

Published 23 Sep 2021 in cs.LG and cs.CE | (2109.11201v1)

Abstract: International audit standards require the direct assessment of a financial statement's underlying accounting transactions, referred to as journal entries. Recently, driven by the advances in artificial intelligence, deep learning inspired audit techniques have emerged in the field of auditing vast quantities of journal entry data. Nowadays, the majority of such methods rely on a set of specialized models, each trained for a particular audit task. At the same time, when conducting a financial statement audit, audit teams are confronted with (i) challenging time-budget constraints, (ii) extensive documentation obligations, and (iii) strict model interpretability requirements. As a result, auditors prefer to harness only a single preferably multi-purpose' model throughout an audit engagement. We propose a contrastive self-supervised learning framework designed to learn audit task invariant accounting data representations to meet this requirement. The framework encompasses deliberate interacting data augmentation policies that utilize the attribute characteristics of journal entry data. We evaluate the framework on two real-world datasets of city payments and transfer the learned representations to three downstream audit tasks: anomaly detection, audit sampling, and audit documentation. Our experimental results provide empirical evidence that the proposed framework offers the ability to increase the efficiency of audits by learning rich and interpretablemulti-task' representations.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.