Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-network Computation for Large-scale Federated Learning over Wireless Edge Networks (2109.10903v2)

Published 22 Sep 2021 in cs.IT, cs.NI, and math.IT

Abstract: Most conventional Federated Learning (FL) models are using a star network topology where all users aggregate their local models at a single server (e.g., a cloud server). That causes significant overhead in terms of both communications and computing at the server, delaying the training process, especially for large scale FL systems with straggling nodes. This paper proposes a novel edge network architecture that enables decentralizing the model aggregation process at the server, thereby significantly reducing the training delay for the whole FL network. Specifically, we design a highly-effective in-network computation protocol (INC) consisting of a user scheduling mechanism, an in-network aggregation process (INA) which is designed for both primal- and primal-dual methods in distributed machine learning problems, and a network routing algorithm. Under the proposed INA, we then formulate a joint routing and resource optimization problem, aiming to minimize the aggregation latency. The problem is NP-hard, and thus we propose a polynomial time routing algorithm which can achieve near optimal performance with a theoretical bound. Simulation results showed that the proposed INC framework can not only help reduce the FL training latency, up to 5.6 times, but also significantly decrease cloud's traffic and computing overhead. This can enable large-scale FL.

Citations (13)

Summary

We haven't generated a summary for this paper yet.