Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spectral Approach to Off-Policy Evaluation for POMDPs (2109.10502v1)

Published 22 Sep 2021 in cs.LG

Abstract: We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes, where the evaluation policy depends only on observable variables but the behavior policy depends on latent states (Tennenholtz et al. (2020a)). Prior work on this problem uses a causal identification strategy based on one-step observable proxies of the hidden state, which relies on the invertibility of certain one-step moment matrices. In this work, we relax this requirement by using spectral methods and extending one-step proxies both into the past and future. We empirically compare our OPE methods to existing ones and demonstrate their improved prediction accuracy and greater generality. Lastly, we derive a separate Importance Sampling (IS) algorithm which relies on rank, distinctness, and positivity conditions, and not on the strict sufficiency conditions of observable trajectories with respect to the reward and hidden-state structure required by Tennenholtz et al. (2020a).

Citations (15)

Summary

We haven't generated a summary for this paper yet.