Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double Schubert polynomials do have saturated Newton polytopes (2109.10299v3)

Published 21 Sep 2021 in math.AC, math.AG, and math.CO

Abstract: We prove that double Schubert polynomials have the Saturated Newton Polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study non-standard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen-Macaulay prime ideal, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.

Summary

We haven't generated a summary for this paper yet.