2000 character limit reached
A Bishop-Phelps-Bollobás theorem for bounded analytic functions (2109.10125v4)
Published 21 Sep 2021 in math.FA, math.CV, and math.OA
Abstract: Let $H\infty$ denote the Banach algebra of all bounded analytic functions on the open unit disc and denote by $\mathscr{B}(H\infty)$ the Banach space of all bounded linear operators from $H\infty$ to itself. We prove that the Bishop-Phelps-Bollob\'{a}s property holds for $\mathscr{B}(H\infty)$. As an application to our approach, we prove that the Bishop-Phelps-Bollob\'{a}s property also holds for operator ideals of $\mathscr{B}(H\infty)$.