Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Networks for Graph Drawing (2109.10061v3)

Published 21 Sep 2021 in cs.LG

Abstract: Graph Drawing techniques have been developed in the last few years with the purpose of producing aesthetically pleasing node-link layouts. Recently, the employment of differentiable loss functions has paved the road to the massive usage of Gradient Descent and related optimization algorithms. In this paper, we propose a novel framework for the development of Graph Neural Drawers (GND), machines that rely on neural computation for constructing efficient and complex maps. GNDs are Graph Neural Networks (GNNs) whose learning process can be driven by any provided loss function, such as the ones commonly employed in Graph Drawing. Moreover, we prove that this mechanism can be guided by loss functions computed by means of Feedforward Neural Networks, on the basis of supervision hints that express beauty properties, like the minimization of crossing edges. In this context, we show that GNNs can nicely be enriched by positional features to deal also with unlabelled vertexes. We provide a proof-of-concept by constructing a loss function for the edge-crossing and provide quantitative and qualitative comparisons among different GNN models working under the proposed framework.

Citations (15)

Summary

We haven't generated a summary for this paper yet.