Papers
Topics
Authors
Recent
2000 character limit reached

Sharp Concentration Inequalities for the Centered Relative Entropy

Published 18 Sep 2021 in math.ST, cs.IT, math.IT, and stat.TH | (2109.09028v1)

Abstract: We study the relative entropy between the empirical estimate of a discrete distribution and the true underlying distribution. If the minimum value of the probability mass function exceeds an $\alpha > 0$ (i.e. when the true underlying distribution is bounded sufficiently away from the boundary of the simplex), we prove an upper bound on the moment generating function of the centered relative entropy that matches (up to logarithmic factors in the alphabet size and $\alpha$) the optimal asymptotic rates, subsequently leading to a sharp concentration inequality for the centered relative entropy. As a corollary of this result we also obtain confidence intervals and moment bounds for the centered relative entropy that are sharp up to logarithmic factors in the alphabet size and $\alpha$.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.