Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Concentration Inequalities for the Centered Relative Entropy (2109.09028v1)

Published 18 Sep 2021 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: We study the relative entropy between the empirical estimate of a discrete distribution and the true underlying distribution. If the minimum value of the probability mass function exceeds an $\alpha > 0$ (i.e. when the true underlying distribution is bounded sufficiently away from the boundary of the simplex), we prove an upper bound on the moment generating function of the centered relative entropy that matches (up to logarithmic factors in the alphabet size and $\alpha$) the optimal asymptotic rates, subsequently leading to a sharp concentration inequality for the centered relative entropy. As a corollary of this result we also obtain confidence intervals and moment bounds for the centered relative entropy that are sharp up to logarithmic factors in the alphabet size and $\alpha$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.