Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modern Evolution Strategies for Creativity: Fitting Concrete Images and Abstract Concepts (2109.08857v2)

Published 18 Sep 2021 in cs.NE, cs.CV, and cs.LG

Abstract: Evolutionary algorithms have been used in the digital art scene since the 1970s. A popular application of genetic algorithms is to optimize the procedural placement of vector graphic primitives to resemble a given painting. In recent years, deep learning-based approaches have also been proposed to generate procedural drawings, which can be optimized using gradient descent. In this work, we revisit the use of evolutionary algorithms for computational creativity. We find that modern evolution strategies (ES) algorithms, when tasked with the placement of shapes, offer large improvements in both quality and efficiency compared to traditional genetic algorithms, and even comparable to gradient-based methods. We demonstrate that ES is also well suited at optimizing the placement of shapes to fit the CLIP model, and can produce diverse, distinct geometric abstractions that are aligned with human interpretation of language. Videos and demo: https://es-clip.github.io/

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com