Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadrature by fundamental solutions: kernel-independent layer potential evaluation for large collections of simple objects (2109.08802v1)

Published 18 Sep 2021 in math.NA, cs.NA, and physics.comp-ph

Abstract: Well-conditioned boundary integral methods for the solution of elliptic boundary value problems (BVPs) are powerful tools for static and dynamic physical simulations. When there are many close-to-touching boundaries (eg, in complex fluids) or when the solution is needed in the bulk, nearly-singular integrals must be evaluated at many targets. We show that precomputing a linear map from surface density to an effective source representation renders this task highly efficient, in the common case where each object is "simple", ie, its smooth boundary needs only moderately many nodes. We present a kernel-independent method needing only an upsampled smooth surface quadrature, and one dense factorization, for each distinct shape. No (near-)singular quadrature rules are needed. The resulting effective sources are drop-in compatible with fast algorithms, with no local corrections nor bookkeeping. Our extensive numerical tests include 2D FMM-based Helmholtz and Stokes BVPs with up to 1000 objects (281000 unknowns), and a 3D Laplace BVP with 10 ellipsoids separated by $1/30$ of a diameter. We include a rigorous analysis for analytic data in 2D and 3D.

Citations (10)

Summary

We haven't generated a summary for this paper yet.