Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Optimization of the Constant Flow Parallel Micropump Using RBF Neural Network (2109.08717v6)

Published 17 Sep 2021 in cs.LG, cs.RO, cs.SY, and eess.SY

Abstract: The objective of this work is to optimize the performance of a constant flow parallel mechanical displacement micropump, which has parallel pump chambers and incorporates passive check valves. The critical task is to minimize the pressure pulse caused by regurgitation, which negatively impacts the constant flow rate, during the reciprocating motion when the left and right pumps interchange their role of aspiration and transfusion. Previous works attempt to solve this issue via the mechanical design of passive check valves. In this work, the novel concept of overlap time is proposed, and the issue is solved from the aspect of control theory by implementing a RBF neural network trained by both unsupervised and supervised learning. The experimental results indicate that the pressure pulse is optimized in the range of 0.15 - 0.25 MPa, which is a significant improvement compared to the maximum pump working pressure of 40 MPa.

Citations (1)

Summary

We haven't generated a summary for this paper yet.