Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Estimation for Extremely Large-Scale Massive MIMO: Far-Field, Near-Field, or Hybrid-Field? (2109.07883v3)

Published 16 Sep 2021 in cs.IT, eess.SP, and math.IT

Abstract: Extremely large-scale massive MIMO (XL-MIMO) is a promising technique for future 6G communications.However, existing far-field or near-field channel model mismatches the hybrid-field channel feature in the practical XL-MIMO system.Thus,existing far-field and near-field channel estimation schemes cannot be directly used to accurately estimate the hybrid-field XL-MIMO channel. To solve this problem, we propose an efficient hybrid-field channel estimation scheme by accurately modeling the XL-MIMO channel.Specifically,we firstly reveal the hybrid-field channel feature of the XL-MIMO channel, where different scatters may be in far-field or near-field region.Then, we propose a hybrid-field channel model to capture this feature, which contains both the far-field and near-field path components. Finally, we propose a hybrid-field channel estimation scheme, where the far-field and near-field path components are respectively estimated. Simulation results show that the proposed scheme performs better than existing schemes.

Citations (133)

Summary

We haven't generated a summary for this paper yet.