Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer-based Language Models for Factoid Question Answering at BioASQ9b (2109.07185v1)

Published 15 Sep 2021 in cs.CL

Abstract: In this work, we describe our experiments and participating systems in the BioASQ Task 9b Phase B challenge of biomedical question answering. We have focused on finding the ideal answers and investigated multi-task fine-tuning and gradual unfreezing techniques on transformer-based LLMs. For factoid questions, our ALBERT-based systems ranked first in test batch 1 and fourth in test batch 2. Our DistilBERT systems outperformed the ALBERT variants in test batches 4 and 5 despite having 81% fewer parameters than ALBERT. However, we observed that gradual unfreezing had no significant impact on the model's accuracy compared to standard fine-tuning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Urvashi Khanna (2 papers)
  2. Diego Mollá (11 papers)
Citations (5)