Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Globally Consistent 3D LiDAR Mapping with GPU-accelerated GICP Matching Cost Factors (2109.07073v2)

Published 15 Sep 2021 in cs.RO

Abstract: This paper presents a real-time 3D LiDAR mapping framework based on global matching cost minimization. The proposed method constructs a factor graph that directly minimizes matching costs between frames over the entire map, unlike pose graph-based approaches that minimize errors in the pose space. For real-time global matching cost minimization, we use a voxel data association-based GICP matching cost factor that is able to fully leverage GPU parallel processing. The combination of the matching cost factor and GPU computation enables constraint of the relative pose between frames with a small overlap and creation of a densely connected factor graph. The mapping process is managed based on a voxel-based overlap metric that can quickly be evaluated on a GPU. We incorporate the proposed method with an external loop detection method in order to help the voxel-based matching cost factors to avoid convergence in a local solution. The experimental result on the KITTI dataset shows that the proposed approach improves the estimation accuracy of long trajectories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, Dec. 2010.
  2. J. Behley and C. Stachniss, “Efficient surfel-based SLAM using 3D laser range data in urban environments,” in Robotics: Science and Systems XIV.   Robotics: Science and Systems Foundation, June 2018.
  3. V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and J. Nieto, “Voxgraph: Globally consistent, volumetric mapping using signed distance function submaps,” IEEE Robotics and Automation Letters, vol. 5, no. 1, pp. 227–234, Jan. 2020.
  4. D. Landry, F. Pomerleau, and P. Giguere, “CELLO-3D: Estimating the covariance of ICP in the real world,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2019.
  5. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela, “LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE.   IEEE, Oct. 2020, pp. 5135–5142.
  6. W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2016.
  7. F. Lu and E. Milios, “Globally consistent range scan alignment for environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–349, Oct. 1997.
  8. D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg, “Globally consistent 3D mapping with scan matching,” Robotics and Autonomous Systems, vol. 56, no. 2, pp. 130–142, Feb. 2008.
  9. J. Sprickerhof, A. Nüchter, K. Lingemann, and J. Hertzberg, “A heuristic loop closing technique for large-scale 6D SLAM,” Automatika, vol. 52, no. 3, pp. 199–222, Jan. 2011.
  10. K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP for fast and accurate 3D point cloud registration,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2021.
  11. A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics: Science and Systems V.   Robotics: Science and Systems Foundation, June 2009.
  12. G. Kim and A. Kim, “Scan Context: Egocentric spatial descriptor for place recognition within 3D point cloud map,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, Oct. 2018.
  13. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI vision benchmark suite,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition.   IEEE, June 2012.
  14. M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “LiTAMIN2: Ultra light lidar-based slam using geometric approximation applied with KL-divergence,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2021.
  15. Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “MULLS: Versatile lidar slam via multi-metric linear least square,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2021.
  16. O. Bengtsson and A.-J. Baerveldt, “Robot localization based on scan-matching—estimating the covariance matrix for the IDC algorithm,” Robotics and Autonomous Systems, vol. 44, no. 1, pp. 29–40, July 2003.
  17. T. M. Iversen, A. G. Buch, and D. Kraft, “Prediction of ICP pose uncertainties using monte carlo simulation with synthetic depth images,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, Sept. 2017.
  18. T. Whelan, M. Kaess, J. J. Leonard, and J. McDonald, “Deformation-based loop closure for large scale dense RGB-D SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, Nov. 2013.
  19. C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan, “Elastic LiDAR fusion: Dense map-centric continuous-time SLAM,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2018.
  20. R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, Oct. 2017.
  21. T. Schops, T. Sattler, and M. Pollefeys, “BAD SLAM: Bundle adjusted direct RGB-D SLAM,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition.   IEEE, June 2019.
  22. Z. Liu and F. Zhang, “BALM: Bundle adjustment for lidar mapping,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3184–3191, Apr. 2021.
  23. D. Wisth, M. Camurri, S. Das, and M. Fallon, “Unified multi-modal landmark tracking for tightly coupled lidar-visual-inertial odometry,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1004–1011, Apr. 2021.
  24. X. Zheng and J. Zhu, “Efficient LiDAR odometry for autonomous driving,” IEEE Robotics and Automation Letters, pp. 1–1, 2021.
  25. Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li, “LO-net: Deep real-time lidar odometry,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition.   IEEE, June 2019.
  26. X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag, J. Behley, and C. Stachniss, “OverlapNet: Loop closing for LiDAR-based SLAM,” in Robotics: Science and Systems XVI.   Robotics: Science and Systems Foundation, July 2020.
  27. Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham, “RandLA-net: Efficient semantic segmentation of large-scale point clouds,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition.   IEEE, June 2020.
  28. T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations,” International Journal of Robotics Research, vol. 31, no. 12, pp. 1377–1393, Sept. 2012.
  29. J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-time,” in Robotics: Science and Systems X.   Robotics: Science and Systems Foundation, July 2014.
  30. J.-E. Deschaud, “IMLS-SLAM: Scan-to-model matching based on 3d data,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2018.
  31. X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, and C. Stachniss, “SuMa++: Efficient LiDAR-based semantic SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, Nov. 2019.
  32. J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,” Autonomous Robots, vol. 41, no. 2, pp. 401–416, Feb. 2016.
  33. J. Razlaw, D. Droeschel, D. Holz, and S. Behnke, “Evaluation of registration methods for sparse 3D laser scans,” in European Conference on Mobile Robots.   IEEE, Sept. 2015.
Citations (26)

Summary

We haven't generated a summary for this paper yet.