Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A local energy-based discontinuous Galerkin method for fourth order semilinear wave equations (2109.07033v2)

Published 15 Sep 2021 in math.NA and cs.NA

Abstract: This paper generalizes the earlier work on the energy-based discontinuous Galerkin method for second-order wave equations to fourth-order semilinear wave equations. We first rewrite the problem into a system with a second-order spatial derivative, then apply the energy-based discontinuous Galerkin method to the system. The proposed scheme, on the one hand, is more computationally efficient compared with the local discontinuous Galerkin method because of fewer auxiliary variables. On the other hand, it is unconditionally stable without adding any penalty terms, and admits optimal convergence in the $L2$ norm for both solution and auxiliary variables. In addition, the energy-dissipating or energy-conserving property of the scheme follows from simple, mesh-independent choices of the interelement fluxes. We also present a stability and convergence analysis along with numerical experiments to demonstrate optimal convergence for certain choices of the interelement fluxes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.