Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Choosing an Optimal Method for Causal Decomposition Analysis: A Better Practice for Identifying Contributing Factors to Health Disparities (2109.06940v1)

Published 14 Sep 2021 in stat.ME and stat.AP

Abstract: Causal decomposition analysis provides a way to identify mediators that contribute to health disparities between marginalized and non-marginalized groups. In particular, the degree to which a disparity would be reduced or remain after intervening on a mediator is of interest. Yet, estimating disparity reduction and remaining might be challenging for many researchers, possibly because there is a lack of understanding of how each estimation method differs from other methods. In addition, there is no appropriate estimation method available for a certain setting (i.e., a regression-based approach with a categorical mediator). Therefore, we review the merits and limitations of the existing three estimation methods (i.e., regression, weighting, and imputation) and provide two new extensions that are useful in practical settings. A flexible new method uses an extended imputation approach to address a categorical and continuous mediator or outcome while incorporating any nonlinear relationships. A new regression method provides a simple estimator that performs well in terms of bias and variance but at the cost of assuming linearity, except for exposure and mediator interactions. Recommendations are given for choosing methods based on a review of different methods and simulation studies. We demonstrate the practice of choosing an optimal method by identifying mediators that reduce race and gender disparity in cardiovascular health, using data from the Midlife Development in the US study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.