Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Scale Aligned Distillation for Low-Resolution Detection (2109.06875v1)

Published 14 Sep 2021 in cs.CV

Abstract: In instance-level detection tasks (e.g., object detection), reducing input resolution is an easy option to improve runtime efficiency. However, this option traditionally hurts the detection performance much. This paper focuses on boosting the performance of low-resolution models by distilling knowledge from a high- or multi-resolution model. We first identify the challenge of applying knowledge distillation (KD) to teacher and student networks that act on different input resolutions. To tackle it, we explore the idea of spatially aligning feature maps between models of varying input resolutions by shifting feature pyramid positions and introduce aligned multi-scale training to train a multi-scale teacher that can distill its knowledge to a low-resolution student. Further, we propose crossing feature-level fusion to dynamically fuse teacher's multi-resolution features to guide the student better. On several instance-level detection tasks and datasets, the low-resolution models trained via our approach perform competitively with high-resolution models trained via conventional multi-scale training, while outperforming the latter's low-resolution models by 2.1% to 3.6% in terms of mAP. Our code is made publicly available at https://github.com/dvlab-research/MSAD.

Citations (50)

Summary

We haven't generated a summary for this paper yet.