Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Temporal Variational Model for Story Generation (2109.06807v1)

Published 14 Sep 2021 in cs.CL and cs.AI

Abstract: Recent LLMs can generate interesting and grammatically correct text in story generation but often lack plot development and long-term coherence. This paper experiments with a latent vector planning approach based on a TD-VAE (Temporal Difference Variational Autoencoder), using the model for conditioning and reranking for text generation. The results demonstrate strong performance in automatic cloze and swapping evaluations. The human judgments show stories generated with TD-VAE reranking improve on a GPT-2 medium baseline and show comparable performance to a hierarchical LSTM reranking model. Conditioning on the latent vectors proves disappointing and deteriorates performance in human evaluation because it reduces the diversity of generation, and the models don't learn to progress the narrative. This highlights an important difference between technical task performance (e.g. cloze) and generating interesting stories.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. David Wilmot (4 papers)
  2. Frank Keller (45 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.