Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ImUnity: a generalizable VAE-GAN solution for multicenter MR image harmonization (2109.06756v1)

Published 14 Sep 2021 in eess.IV, cs.CV, and cs.LG

Abstract: ImUnity is an original deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D-slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its self-supervised training. It eventually generates 'corrected' MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Stenzel Cackowski (1 paper)
  2. Emmanuel L. Barbier (2 papers)
  3. Michel Dojat (18 papers)
  4. Thomas Christen (8 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.