Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomaly Attribution of Multivariate Time Series using Counterfactual Reasoning (2109.06562v1)

Published 14 Sep 2021 in cs.LG, cs.CV, and stat.ML

Abstract: There are numerous methods for detecting anomalies in time series, but that is only the first step to understanding them. We strive to exceed this by explaining those anomalies. Thus we develop a novel attribution scheme for multivariate time series relying on counterfactual reasoning. We aim to answer the counterfactual question of would the anomalous event have occurred if the subset of the involved variables had been more similarly distributed to the data outside of the anomalous interval. Specifically, we detect anomalous intervals using the Maximally Divergent Interval (MDI) algorithm, replace a subset of variables with their in-distribution values within the detected interval and observe if the interval has become less anomalous, by re-scoring it with MDI. We evaluate our method on multivariate temporal and spatio-temporal data and confirm the accuracy of our anomaly attribution of multiple well-understood extreme climate events such as heatwaves and hurricanes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.