The Hardy--Littlewood--Chowla conjecture in the presence of a Siegel zero
Abstract: Assuming that Siegel zeros exist, we prove a hybrid version of the Chowla and Hardy--Littlewood prime tuples conjectures. Thus, for an infinite sequence of natural numbers $x$, and any distinct integers $h_1,\dots,h_k,h'1,\dots,h'\ell$, we establish an asymptotic formula for $$\sum_{n\leq x}\Lambda(n+h_1)\cdots \Lambda(n+h_k)\lambda(n+h_{1}')\cdots \lambda(n+h_{\ell}')$$ for any $0\leq k\leq 2$ and $\ell \geq 0$. Specializing to either $\ell=0$ or $k=0$, we deduce the previously known results on the Hardy--Littlewood (or twin primes) conjecture and the Chowla conjecture under the existence of Siegel zeros, due to Heath-Brown and Chinis, respectively. The range of validity of our asymptotic formula is wider than in these previous results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.