Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The State of the Art when using GPUs in Devising Image Generation Methods Using Deep Learning (2109.05783v1)

Published 13 Sep 2021 in cs.CV and cs.GR

Abstract: Deep learning is a technique for machine learning using multi-layer neural networks. It has been used for image synthesis and image recognition, but in recent years, it has also been used for various social detection and social labeling. In this analysis, we compared (1) the number of Iterations per minute between the GPU and CPU when using the VGG model and the NIN model, and (2) the number of Iterations per minute by the number of pixels when using the VGG model, using an image with 128 pixels. When the number of pixels was 64 or 128, the processing time was almost the same when using the GPU, but when the number of pixels was changed to 256, the number of iterations per minute decreased and the processing time increased by about three times. In this case study, since the number of pixels becomes core dumping when the number of pixels is 512 or more, we can consider that we should consider improvement in the vector calculation part. If we aim to achieve 8K highly saturated computer graphics using neural networks, we will need to consider an environment that allows computation even when the size of the image becomes even more highly saturated and massive, and parallel computation when performing image recognition and tuning.

Summary

We haven't generated a summary for this paper yet.