Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wine is Not v i n. -- On the Compatibility of Tokenizations Across Languages (2109.05772v1)

Published 13 Sep 2021 in cs.CL

Abstract: The size of the vocabulary is a central design choice in large pretrained LLMs, with respect to both performance and memory requirements. Typically, subword tokenization algorithms such as byte pair encoding and WordPiece are used. In this work, we investigate the compatibility of tokenizations for multilingual static and contextualized embedding spaces and propose a measure that reflects the compatibility of tokenizations across languages. Our goal is to prevent incompatible tokenizations, e.g., "wine" (word-level) in English vs.\ "v i n" (character-level) in French, which make it hard to learn good multilingual semantic representations. We show that our compatibility measure allows the system designer to create vocabularies across languages that are compatible -- a desideratum that so far has been neglected in multilingual models.

Citations (17)

Summary

We haven't generated a summary for this paper yet.